Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A central problem in any quantum theory of gravity is to explain the emergence of the classical spacetime geometry in some limit of a more fundamental, microscopic description of nature. The gauge/gravity-correspondence provides a framework in which this problem can, in principle, be addressed. This is a holographic correspondence which relates a supergravity theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry should therefore emerge from some quantum state of the dual gauge theory. Here we confirm this by showing how the classical metric emerges from a canonical state in the dual gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying the supergravity geometry, in terms of an explicit integral formula involving the canonical quantum state in question. In the special case of toric quiver gauge theories we show that our results can be computationally simplified through a process of tropicalization.more » « less
- 
            Abstract We discuss a set of heterotic and type II string theory compactifications to$$1+1$$ dimensions that are characterized by factorized internal worldsheet CFTs of the form$$V_1\otimes \bar{V}_2$$ , where$$V_1, V_2$$ are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds–Kac–Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds–Weyl–Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.more » « less
- 
            Abstract We consider a special class of unipotent periods for automorphic forms on a finite cover of a reductive adelic group $$\mathbf {G}(\mathbb {A}_\mathbb {K})$$ G ( A K ) , which we refer to as Fourier coefficients associated to the data of a ‘Whittaker pair’. We describe a quasi-order on Fourier coefficients, and an algorithm that gives an explicit formula for any coefficient in terms of integrals and sums involving higher coefficients. The maximal elements for the quasi-order are ‘Levi-distinguished’ Fourier coefficients, which correspond to taking the constant term along the unipotent radical of a parabolic subgroup, and then further taking a Fourier coefficient with respect to a $${\mathbb K}$$ K -distinguished nilpotent orbit in the Levi quotient. Thus one can express any Fourier coefficient, including the form itself, in terms of higher Levi-distinguished coefficients. In companion papers we use this result to determine explicit Fourier expansions of minimal and next-to-minimal automorphic forms on split simply-laced reductive groups, and to obtain Euler product decompositions of certain Fourier coefficients.more » « less
- 
            Abstract In this paper, we analyze Fourier coefficients of automorphic forms on a finite cover G of an adelic split simply-laced group. Let $$\pi $$ be a minimal or next-to-minimal automorphic representation of G . We prove that any $$\eta \in \pi $$ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on $$\operatorname {GL}_n$$ . We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type $$D_5$$ and $$E_8$$ with a view toward applications to scattering amplitudes in string theory.more » « less
- 
            We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also establish a ‘hidden’ invariance property of Fourier coefficients. We apply these results to minimal and next-to-minimal automorphic representations, and deduce Eulerianity for a large class of Fourier and Fourier–Jacobi coefficients. In particular, we prove Eulerianity for parabolic Fourier coefficients with characters of maximal rank for a class of Eisenstein series in minimal and next-to-minimal representations of groups of ADE-type that are of interest in string theory.more » « less
- 
            null (Ed.)A bstract We study some special features of F 24 , the holomorphic c = 12 superconformal field theory (SCFT) given by 24 chiral free fermions. We construct eight different Lie superalgebras of “physical” states of a chiral superstring compactified on F 24 , and we prove that they all have the structure of Borcherds-Kac-Moody superalgebras. This produces a family of new examples of such superalgebras. The models depend on the choice of an $$ \mathcal{N} $$ N = 1 supercurrent on F 24 , with the admissible choices labeled by the semisimple Lie algebras of dimension 24. We also discuss how F 24 , with any such choice of supercurrent, can be obtained via orbifolding from another distinguished c = 12 holomorphic SCFT, the $$ \mathcal{N} $$ N = 1 supersymmetric version of the chiral CFT based on the E 8 lattice.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
